Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ
نویسندگان
چکیده
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ.
منابع مشابه
The vlhA gene sequencing of Iranian Mycoplasma synoviae isolates
Mycoplasma synoviae expressed variable lipoprotein haemagglutinin (VlhA) is believed to play a major role in pathogenesis of the disease by mediating adherence and immune evasion. The aim of this study was sequencing Iranian M. synoviae isolates for the detection of nucleotide variation in the M. synoviae vlhA gene. Using oligonucleotide primers complementary to the single-copy conserved 5´ end...
متن کاملNext Generation Sequencing: Potential and Application in Drug Discovery
The world has now entered into a new era of genomics because of the continued advancements in the next generation high throughput sequencing technologies, which includes sequencing by synthesis-fluorescent in situ sequencing (FISSEQ), pyrosequencing, sequencing by ligation using polony amplification, supported oligonucleotide detection (SOLiD), sequencing by hybridization along with sequencing ...
متن کاملThe Spectrum of Mutations in 100 Thalassemic Carriers Referred to Ghaem Hospital of Mashhad
Abstract Background Thalassemia is common in the Iranian population, and it must be considered in the differential diagnosis of the microcytic hypochromic anemia. The molecular analysis of β-thalassemia is necessary for prenatal molecular diagnosis. Α-thalassemia caused by loss of function of either one of the two duplicated α-globin genes or in less frequent non deletion mutations mostly loc...
متن کاملDetection of Rifampicin Resistance in Mycobacterium tuberculosis by Padlock Probes and Magnetic Nanobead-Based Readout
Control of the global epidemic tuberculosis is severely hampered by the emergence of drug-resistant Mycobacterium tuberculosis strains. Molecular methods offer a more rapid means of characterizing resistant strains than phenotypic drug susceptibility testing. We have developed a molecular method for detection of rifampicin-resistant M. tuberculosis based on padlock probes and magnetic nanobeads...
متن کاملEnabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies.
BACKGROUND Pharmacogenetics is a scientific discipline that examines the genetic basis for individual variations in response to therapeutics. Pharmacogenetics promises to develop individualized medicines tailored to patients' genotypes. However, identifying and genotyping a vast number of genetic polymorphisms in large populations also pose a great challenge. APPROACH This article reviews the...
متن کامل